Learning to Segment Object Candidates
نویسندگان
چکیده
Recent object detection systems rely on two critical steps: (1) a set of object proposals is predicted as efficiently as possible, and (2) this set of candidate proposals is then passed to an object classifier. Such approaches have been shown they can be fast, while achieving the state of the art in detection performance. In this paper, we propose a new way to generate object proposals, introducing an approach based on a discriminative convolutional network. Our model is trained jointly with two objectives: given an image patch, the first part of the system outputs a class-agnostic segmentation mask, while the second part of the system outputs the likelihood of the patch being centered on a full object. At test time, the model is efficiently applied on the whole test image and generates a set of segmentation masks, each of them being assigned with a corresponding object likelihood score. We show that our model yields significant improvements over state-of-theart object proposal algorithms. In particular, compared to previous approaches, our model obtains substantially higher object recall using fewer proposals. We also show that our model is able to generalize to unseen categories it has not seen during training. Unlike all previous approaches for generating object masks, we do not rely on edges, superpixels, or any other form of low-level segmentation.
منابع مشابه
Saliency-Guided Object Candidates Based on Gestalt Principles
We present a new method for generating general object candidates for cluttered RGB-D scenes. Starting from an over-segmentation of the image, we build a graph representation and define an object candidate as a subgraph that has maximal internal similarity as well as minimal external similarity. These candidates are created by successively adding segments to a seed segment in a saliency-guided w...
متن کاملBootstrapped learning of novel objects.
Recognition of familiar objects in cluttered backgrounds is a challenging computational problem. Camouflage provides a particularly striking case, where an object is difficult to detect, recognize, and segment even when in "plain view." Current computational approaches combine low-level features with high-level models to recognize objects. But what if the object is unfamiliar? A novel camouflag...
متن کاملThe effect of Code switching on the Acquisition of Object Relative Clauses by Iranian EFL Learners
This study attempted to investigate the impact of teacher’s code-switching on the acquisition of a problematic grammatical structure, namely, object relative clauses, by intermediate EFL learners. Moreover, a secondary objective of the study was to determine the EFL learners’ attitudes and opinions regarding the effectiveness of teacher’s code-switching in their learning of a specific aspect of...
متن کاملLearning to Segment Object Proposals via Recursive Neural Networks
To avoid the exhaustive search over locations and scales, current state-of-the-art object detection systems usually involve a crucial component generating a batch of candidate object proposals from images. In this paper, we present a simple yet effective approach for segmenting object proposals via a deep architecture of recursive neural networks (RNNs), which hierarchically groups regions for ...
متن کاملLearning to Segment via Cut-and-Paste
This paper presents a weakly-supervised approach to object instance segmentation. Starting with known or predicted object bounding boxes, we learn object masks by playing a game of cut-and-paste in an adversarial learning setup. A mask generator takes a detection box and Faster R-CNN features, and constructs a segmentation mask that is used to cut-and-paste the object into a new image location....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015